Ciência

Ciência, Saúde, Economia, Política

Postby mends » 23 Mar 2006, 19:13

The scientific method

Computing the future
Mar 23rd 2006
From The Economist print edition

The practice of science may be undergoing yet another revolution

WHAT makes a scientific revolution? Thomas Kuhn famously described it as a “paradigm shift”—the change that takes place when one idea is overtaken by another, usually through the replacement over time of the generation of scientists who adhered to an old idea with another that cleaves to a new one. These revolutions can be triggered by technological breakthroughs, such as the construction of the first telescope (which overthrew the Aristotelian idea that heavenly bodies are perfect and unchanging) and by conceptual breakthroughs such as the invention of calculus (which allowed the laws of motion to be formulated). This week, a group of computer scientists claimed that developments in their subject will trigger a scientific revolution of similar proportions in the next 15 years.

That claim is not being made lightly. Some 34 of the world's leading biologists, physicists, chemists, Earth scientists and computer scientists, led by Stephen Emmott, of Microsoft Research in Cambridge, Britain, have spent the past eight months trying to understand how future developments in computing science might influence science as a whole. They have concluded, in a report called “Towards 2020 Science”, that computing no longer merely helps scientists with their work. Instead, its concepts, tools and theorems have become integrated into the fabric of science itself. Indeed, computer science produces “an orderly, formal framework and exploratory apparatus for other sciences,” according to George Djorgovski, an astrophysicist at the California Institute of Technology.

There is no doubt that computing has become increasingly important to science over the years. The volume of data produced doubles every year, according to Alexander Szalay, another astrophysicist, who works at Johns Hopkins University in Baltimore. Particle-physics experiments are particularly notorious in this respect. The next big physics experiment will be the Large Hadron Collider currently being built at CERN, a particle-physics laboratory in Geneva. It is expected to produce 800m collisions a second when it starts operations next year. This will result in a data flow of 1 gigabyte per second, enough to fill a DVD every five seconds. All this information must be transmitted from CERN to laboratories around the world for analysis. The computer science being put in place to deal with this and similar phenomena forms the technological aspect of the predicted scientific revolution.

Such solutions, however, are merely an extension of the existing paradigm of collecting and ordering data by whatever technological means are available, but leaving the value-added stuff of interpretation to the human brain. What really interested Dr Emmott's team was whether computers could participate meaningfully in this process, too. That truly would be a paradigm shift in scientific method.

And computer science does, indeed, seem to be developing a role not only in handling data, but also in analysing and interpreting them. For example, devices such as “data cubes” organise information as a collection of independent variables (such as the charges and energies of particles involved in collisions) and their dependent measurements (where and when the collisions took place). This saves physicists a lot of work in deciphering the links between, say, the time elapsed since the initial collision and the types of particle existing at that moment. Meanwhile, in meteorology and epidemiology, computer science is being used to develop models of climate change and the spread of diseases including bird flu, SARS (severe acute respiratory syndrome) and malaria.

Roboboffin
Stephen Muggleton, the head of computational bio-informatics at Imperial College, London, has, meanwhile, taken the involvement of computers with data handling one step further. He argues they will soon play a role in formulating scientific hypotheses and designing and running experiments to test them. The data deluge is such that human beings can no longer be expected to spot patterns in the data. Nor can they grasp the size and complexity of one database and see how it relates to another. Computers—he dubs them “robot scientists”—can help by learning how to do the job. A couple of years ago, for example, a team led by Ross King of the University of Wales, Aberystwyth, demonstrated that a learning machine performed better than humans at selecting experiments that would discriminate between hypotheses about the genetics of yeast.

And it is in biology that computing science is likely to have its greatest impact. The report argues that cells and complex cellular systems can be seen as information-processing systems, so there is a natural fit between them and computational logic circuits. That could lead to new developments in biology, biotechnology and medicine, as well as in computer science.

It is, perhaps, hardly unexpected that if 34 scientists with an interest in computing are asked to comment on the importance of computer science, they will find that it is, indeed, “The Future”. Even so, the team's case is a respectable one. Indeed, this week's issue of Nature has given it “earthquake coverage”—devoting several pages to news and comment about the report. And Microsoft Research Cambridge also announced that it will provide €2.5m ($3m) to support research that addresses policy areas outlined by the report, which include a reform of the education system and the creation of new kinds of research institutes. This is, admittedly, a small sum. If Microsoft wants the world to take its claims—and those of the scientists it commissioned to think about such things—seriously, then it should put more money where its mouth is. Otherwise the old guard might hang around rather longer than expected.
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby mends » 23 Mar 2006, 19:18

Steriling neutrinos? Com essa os caras ganham o Nobel?

MAP-ping the universe
Mar 23rd 2006
From The Economist print edition

Research from the beginning of time


IT IS always nice to be proved right, and that is the happy position in which the controllers of WMAP, an orbiting observatory designed to look at the beginning of the universe, find themselves. Their latest tranche of data on the universal microwave background left over from the Big Bang (WMAP stands for Wilkinson Microwave Anisotropy Probe) confirms the probe's initial observations that space itself underwent an enormous “cosmic inflation” about a trillionth of a second after the beginning of time.

It is possible to tell this from slight variations in the intensity of the microwave background. These are caused by the peaks and troughs of sound waves that echoed through the early universe, and which themselves echo tiny irregularities in the distribution of matter that were “frozen” into the universal fabric by the sudden expansion of cosmic inflation.

The data, which have been submitted for publication in the Astrophysical Journal, also confirm that the universe is not what it seems to human senses. Previous observations suggested that matter of the sort that you can drop on your foot is a mere 4% of the total. The bulk of the universe—some 74% of it—is made of stuff called dark energy. That, though, is just a name. Its effects can be seen, but its nature is obscure. The balance—about 22%—is a third substance known as dark matter. The data from WMAP confirm this mixture, because “ordinary” matter and dark matter should have affected the harmonics of the sound waves in the early universe in different ways, and that is precisely what seems to have happened.

<span style='color:red'>Like the nature of dark energy, the nature of dark matter is unknown. But unlike dark energy, there are several ideas about what it might be, and one of them is the subject of a second paper, in Physical Review Letters, by Peter Biermann of the University of Bonn, in Germany, and Alexander Kusenko, of the University of California, Los Angeles.</span>

Dark matter was first detected in the 1930s, thanks to its gravitational effects on ordinary, visible matter. It is defined by gravity because that is the only way that it interacts—it has no electric charge, and does not feel the strong and weak forces that bind atomic nuclei together.

<span style='font-size:14pt;line-height:100%'><span style='color:red'>At the moment, no particles with that property are known, though several are hypothesised. Dr Biermann and Dr Kusenko think that one in particular of these hypothetical particles—known as a sterile neutrino—will turn out to be the main constituent of dark matter. Sterile neutrinos differ from ordinary neutrinos (electrically neutral particles produced in abundance by the nuclear reactions that power the sun) because ordinary neutrinos feel the weak nuclear force, while sterile ones do not. If Dr Biermann and Dr Kusenko are right about sterile neutrinos forming the bulk of dark matter, that would clear up several puzzles about the universe.

One of these is the speed with which the first stars formed. Stars form most easily from molecular hydrogen, but for the first few million years, most hydrogen would have been ionised into protons and electrons. Dr Biermann and Dr Kusenko, though, reckon that sterile neutrinos would occasionally give off X-rays of exactly the right energy to catalyse the formation of hydrogen molecules, and thus—eventually—of stars.

Another piece of evidence for sterile neutrinos comes from supernovas. These leave behind a dense object known as a pulsar, which forms from the core of the exploding star. Pulsars are often ejected from a supernova at high velocity, meaning, in effect, that they have had a huge sideways kick. Existing physics provides no plausible explanation for this, but if sterile neutrinos do exist then they would be formed in supernovas and ejected in a way that could give just such a kick.

Sterile neutrinos could even explain the prevalence of matter over antimatter in the universe—one of reality's most puzzling aspects, since the models suggest that matter and antimatter should have been formed in equal amounts. They would do this by “stealing” a property called lepton number from the primordial cosmic soup. Existing theory requires lepton number to be conserved (that is, neither created nor destroyed). If it isn't, the symmetry between matter and antimatter breaks down. Obvious, really.</span></span>
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby junior » 24 Mar 2006, 09:04

MMMmmm, pouco provável. A idéia de Sterile neutrinos já existe aí fora faz um tempão, e o modelinho deles é meio só mais um. De qualquer forma, a idéia é, very roughly speaking, a seguinte:

Sabemos hoje em dia que as partículas elementares se agrupam em "famílias", mais ou menos como a tabela periódica. No caso da última, cada coluna tem suas propriedades, e no caso das partículas, cada família tem a sua. Pelo que sabemos hoje, com bastante confiança, o número de famílias de partículas são 3. O que isso quer dizer??

Por exemplo, colocamos numa mesma família o eletron e um neutrino que interage com ele (e por isso chamamos neutrino do eletron :lol: ). Da mesma forma, existe um "primo" do eletron, mais pesado, que se chama "muon", e que tem seu neutrino do muon, e por fim um primo bastante mais gordo chamado "tau", tambem com seu neutrino (aliás, a mesma estrutura de famílias se repete para os quarks, mas isso é outra história...).

Agora, pq são 3 famílias e não 78, ou 1256? Ninguém sabe. Mas importante que isso, sabemos também que partículas mais pesadas em geral tendem a decair para partículas mais leves se não há nada impedindo, e de fato um muon, por exemplo, decai em um eletron+(anti)neutrino do eletron+ neutrino do muon. Por isso, hoje a única coisa que viaja por ai´ e forma a matéria como nós e a mesa em que escrevemos são eletrons, e não há (muitos=significativos) muons por ai´.

E como sabemos que existem as outras famílias?? Produzindo em aceleradores, detectando como subprodutos de raios cósmicos, etc, etc... (De novo, a mesma coisa acontece com quarks, as coisas de que protons e neutrons são feitas. Prótons e nêutrons são feitos de quarks da primeira família, chamados de u (up) e d (down), mas igual existem 2 outras famílias...)

Bom, o ponto é que nos últimos anos descobriu-se que neutrinos têm massa (ao contrário do que se pensava antes!), e isso implica, somehow, que um neutrino pode se converter (note que não disse decair!) em outro, um fenômeno que chama oscilação de neutrinos. É bom lembrar que neutrinos são umas partículas muito especiais, que interagem muito, muito, muito, muito pouco (em números, podem atravessar tranquilamente a Terra como se ela não estivesse la´, da mesma forma que a luz atravessa um vidro, por exemplo). Por isso, é muito, muito difícil detectá-los, e consequentemente difícil obter suas propriedades.

No caso dos sterile neutrinos, eles surgem pq aparentemente alguns experimentos (controversos!) sugerem a necessidade de um "quarto neutrino" em que os outros oscilassem. No entanto, esse quarto neutrino não pode interagir com a matéria normal, pois temos limites bastante bons no número de famílias de neutrinos que interagem com a matéria (são 3 e ponto!). Por isso, se postula que seriam neutrinos que não interagem com nada, senão pela oscilação em outros tipos de neutrino.

Note o quão bizarro isso é: partícula sem carga (portanto não dá para detectar via ionização de um meio), sem massa (têm apenas energia na forma de momentum) e sem interação!! Como se detecta isso?? Como podemos obter informações??

Enfim, o ponto é que nada impede que exista, mas tampouco existe uma evidência de sua existência. Mesmo que amanhã descubram que existe, a história nos ensina que provavelmente vai ser diferente do que imaginamos :lol:. Mas como é terreno de ninguém, onde é difícil obter "real limits" nós físicos vamos brincando :lol: ... Note que não estou dizendo que tem nada de errado nisso! É assim que a física teórica funciona, na tentativa e erro, e usando experimentos para ver se nossas continhas têm algo a ver com o mundo ai´ fora. Mas acho importante deixar claro o que é "verdadeiro" e o que é especulação (ainda que um dia especulação possa virar "verdade") . E no fim das contas, isso seguramente é muito, muito, muito menos especulativo que teoria de cordas, por exemplo, que recebe uma atenção desproporcional da mídia...
"Cosmologists are often in error, but never in doubt." - Lev Landau
User avatar
junior
Grão-Mestre Saidero
Grão-Mestre Saidero
 
Posts: 887
Joined: 13 Feb 2004, 11:55
Location: Sei lá... Em algum lugar com conexão a internet! :-)

Postby mends » 24 Mar 2006, 09:23

muito, muito menos especulativo que teoria de cordas


já que começou, explica aí tb...
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby tgarcia » 28 Mar 2006, 13:28

BAIKONUR - O astronauta brasileiro, tenente-coronel Marcos Pontes, está sendo comparado pelos russos ao pioneiro da exploração espacial, Yuri Gagarin, por sua simpatia, de acordo com o médico da Aeronáutica responsável pelo acompanhamento do astronauta, tenente-coronel Luiz Cláudio Lutiis. "O pessoal está dizendo que ele tem o sorriso de Gagarin", afirmou Lutiis nesta terça-feira, no Centro Espacial de Baikonur, no Cazaquistão.

"Ele é muito alegre, o tempo todo está sorrindo e é muito comunicativo. O Gagarin era assim também." :D

Além do carisma, o médico afirma que Pontes também impressionou os russos por seu excelente desempenho nos testes e treinamentos que vêm enfrentando desde que chegou à Cidade das Estrelas, em Moscou, e depois ao Cosmódromo de Baikonur, no Cazaquistão.

<a href='http://www.estadao.com.br/ciencia/noticias/2006/mar/28/68.htm' target='_blank'>http://www.estadao.com.br/ciencia/noticias...6/mar/28/68.htm</a>
(não consegui anexar a imagem)
User avatar
tgarcia
Mestre Saidero
Mestre Saidero
 
Posts: 315
Joined: 01 Dec 2003, 22:40
Location: Estamos aí...

Postby junior » 29 Mar 2006, 12:10

<a href='http://www.businessweek.com/magazine/content/05_48/b3961604.htm' target='_blank'>DAQUI</a>

Business Week Online


The Devout Donor

John Templeton's $550 million gift doubles his funding of research aimed at showing that science and religion needn't be at odds

Sir John Marks Templeton has been a contrarian from the start. In 1939, when he still lived in a grungy Manhattan walkup with mismatched furniture, Templeton borrowed $10,000 and used it to buy $100 worth of every stock valued at less than a dollar on the New York exchange. The timing hardly seemed opportune: Hitler had just invaded Poland. But Templeton believed that the impending world war would drive up the market -- and he was right. He went on to become one of Wall Street's most successful celebrity stockpickers and then to pioneer the first global-investing mutual funds, ultimately selling his Templeton family of funds to Franklin Resources for $913 million in 1992. His stake: about $440 million.

Now 92 and comfortably ensconced at a Bahamas estate, Templeton has recently made what may be his boldest move yet. Last December he donated $550 million to his already existing private foundation, propelling himself to No. 11 on this year's list of BusinessWeek's 50 Most Generous Philanthropists. His was no ordinary gift. While the vast majority of America's philanthropic heavyweights choose to address traditional and tangible social needs -- feeding the hungry, curing the sick, subsidizing the arts -- Templeton has something else in mind. He wants to make an impact on the world of ideas.

Templeton's controversial goal: to reconcile the worlds of science and religion. A devout man, Templeton began each morning at his mutual fund group with a companywide prayer. Yet he is also a creature of Wall Street -- analytical, numbers-driven, and skeptical. When he hears scientists quarrel with believers, he thinks both sides are missing the broader point. "What I'm trying to do is say: 'Don't try to argue -- maybe you're both right,"' says the energetic billionaire, who still drives his tan, four-door Kia Opirus two miles to his office five days a week.

What projects are being subsidized with the $60 million the John Templeton Foundation now hands out every year? It's a unique mix of science and faith, traditional research and provocative speculation. One beneficiary is a Duke University professor who is investigating the impact that regular church attendance has on blood pressure. Another is the Christian liberal arts institution Calvin College, which puts on Templeton-sponsored seminars with titles such as "Evolutionary Psychology and Scripture Scholarship: More Similar Than You Might Have Thought." The $1.5 million Templeton Prize for Progress Toward Research or Discoveries about Spiritual Realities has been given to everyone from Mother Teresa to physicist Freeman J. Dyson to Watergate-felon-turned-evangelist Charles W. Colson to evangelist Billy Graham.

SEEKING A DIALOGUE
Templeton's venture is the most quixotic mission being undertaken by any major American philanthropist. He is, of course, far from the only person in the country interested in reevaluating the relationship between religion and science. Social conservatives are challenging orthodoxies such as Darwinism and the Big Bang while fighting for their right to control what is taught to schoolchildren. Templeton has done much to cheer their hearts. The Association of American Medical Colleges, for example, credits his foundation for the course in spirituality and medicine that has become a standard part of the curriculum in more than two-thirds of the country's medical schools over the past decade.

But it would be a mistake to pigeonhole Templeton as a member of the Religious Right. While the foundation in the 1990s backed supporters of the theory of intelligent design, the notion that God had a hand in creation, it has since distanced itself from the idea. Foundation Vice-President Charles L. Harper says the group is the largest funder of projects challenging intelligent design and notes that it has invited scientific critics such as Harvard chemist George M. Whitesides to speak at conferences. "We're not trying to encourage people to jump on one side of the fence and throw mudballs at the other," says Harper. "We're in favor of dialogue."

The Templeton Foundation is clearly walking a fine line, but it's one that feels comfortable to its founder. Templeton's own faith stems from a Winchester (Tenn.) childhood in which his parents pushed Christian values of thrift and compassion. "I grew up as a Presbyterian," he says. "Presbyterians thought the Methodists were wrong. The Catholics thought all Protestants were wrong. The Jews thought the Christians were wrong. So what I'm financing is humility. I want people to realize that you shouldn't think you know it all."

A visit to Templeton's boxlike home in the well-heeled Bahamian neighborhood of Lyford Cay makes it clear he is focused on more than material things. Paint flakes off the antebellum pillars outside the Plantation-style residence. Inside, many of the kitchen's original 1969 appliances grace formica countertops. French doors open from the living room onto a brick veranda, offering views of a posh seaside golf club.

Templeton doesn't get to the nearby beach too much anymore. But he still has perfect posture, an affable grin, and the hint of a gentleman's Southern drawl. A naturalized British citizen, he was knighted by the Queen of England in 1987 for his charity. Yet at the tiny third-floor office of his foundation, he does his own photocopying and sometimes answers his own phone. From the comfort of an office recliner upholstered in a print of butterflies, he reviews foundation proposals, flagging promising philanthropic investments in faxes he sends daily to foundation headquarters in Conshohocken, Pa. On a recent Monday he sent six.

HANDING OVER THE REINS
The person on the receiving end of those faxes is usually Templeton's son, foundation President John Templeton Jr., a former trauma surgeon and a born-again Christian. He has been on a hiring tear. In the wake of his father's enormous gift, he must quickly figure out how to more than double the number of grants the foundation makes.

To see how the foundation operates, consider how it moved spirituality onto medical school curricula. In 1992, when Dr. Christina Puchalski taught her first course on spirituality and healing at George Washington University, she knew of three other medical schools offering such courses. In 1995 the Templeton Foundation began offering prizes (now $50,000 for medical schools) to the programs that best integrate issues of spirituality and medicine into their offerings. A few years later the foundation sponsored a conference where professors agreed on a standardized curriculum for a course that teaches medical students about the role of clergy and helps them understand their patients' religious backgrounds.

The funding, paired with an official curriculum, has led about 90 of 125 medical schools to adopt similar programs. "When educators can say I've got money, I've got this outside institution backing me up, they're much more likely to be met with support," says Brownell Anderson, senior associate vice-president for medical education at the AAMC, who credits the Templeton Foundation for the spike.

SIMPLISTIC VS. SOPHISTICATED
Templeton has also lent credibility to research on the topic of forgiveness. The National Institutes of Health didn't fund any projects related to the subject until 1999, when it backed Virginia Commonwealth University psychology professor Everett L. Worthington Jr.'s study Forgiveness, Humility, and Gratitude Among Recently Married Couples, which measured how an education program on forgiveness and reconciliation affects newlywed couples. Worthington's project was also funded by the Templeton Foundation. This year the NIH funded five projects relating to forgiveness. Worthington says that before 1997, when the Templeton Foundation first began funding research on the subject, he could find only 50 studies even remotely related to forgiveness. At last count the number of scientific-paper citations had climbed to nearly 4,500.

By increasing references to religious concepts in scientific journals and by moving religion into public discussion at universities, Templeton has made it easier for closeted believers within the elite halls of the Ivy League to form communities. Martin A. Nowak directs the Program for Evolutionary Dynamics at Harvard University, where he spends his time trying to figure out why people have evolved to help each other if evolution simultaneously fosters competition. Nowak is also a practicing Roman Catholic, a fact he has kept quiet at Harvard until recently. He says the climate is changing on his campus. "As a scientist who believes, you feel you are completely in the minority and you should never talk about it," says Nowak, who recently became an adviser to the Templeton Foundation. "It's nice to meet people with whom you can talk about a more complete perspective of the world."

Critics worry that Templeton is buying the support of scientists who are desperate to win research dollars. Sean Carroll is an assistant professor of physics at the University of Chicago. An outspoken atheist, he recently declined an invitation to present at a Templeton conference at the University of California at Berkeley. He says that because funding for quantum mechanics is hard to get, some of his colleagues are willing to take Templeton's research grants even if they don't support his beliefs. The Templeton folks make it tempting, he says, because unlike other academic conferences, Templeton's confabs pay presenters. Carroll says he would have received $2,000 to speak at the conference, a similar sum if he published his talk in their anthology, and a chance at a $10,000 prize for scientists under 40. For an impoverished academic trying to scrape by, that's alluring. Says Carroll: "That's money I could have used to, say, buy a car!"

Other atheists take a more neutral stance. In 2003, Harvard chemist Whitesides agreed to help the Templeton Foundation organize a cosmology conference called "Biochemistry and Fine-Tuning." Whitesides says he was surprised by the extent to which spirituality was downplayed at the conference. Says Whitesides: "There are simplistic views and then there are more sophisticated views, and I think the Templeton Foundation embraces a sophisticated view."

The foundation will have new leadership soon, though. At the time he made his gift, Templeton announced that he'll step down in January, leaving his son, a conservative philanthropist whose religious views are more traditional than his father's, to chair the board. Templeton has designed a process to keep his grantmaking on track: Every five years independent analysts will evaluate whether officers are making grants that match his intent. If they find his son is giving 9% of the grants to other causes, John Jr. has one year to correct the problem. If not, he'll be fired along with his two top people. That's not very forgiving, but it's one way to ensure that Templeton's unique vision lives on.


By Jessi Hempel
"Cosmologists are often in error, but never in doubt." - Lev Landau
User avatar
junior
Grão-Mestre Saidero
Grão-Mestre Saidero
 
Posts: 887
Joined: 13 Feb 2004, 11:55
Location: Sei lá... Em algum lugar com conexão a internet! :-)

Postby mends » 03 Apr 2006, 09:24

um pouco de cosmologia
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby mends » 03 Apr 2006, 18:50

lembrei da Poli
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby mends » 03 Apr 2006, 19:18

Manchete preocupante no Yahoo:

BBQ LINKED WITH CANCER


:lol: essas pesquisas são uma pândega...daqui a duas semanas, sai uma dizendo que xurras faz bem.

:rolleyes: pelo sim, pelo não, eu já tive o meu. Cuidem-se, comam menos xurras :P
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby mends » 07 Apr 2006, 10:08

Dark matter

Accidence and substance
Apr 6th 2006
From The Economist print edition

Two possible explanations for the bulk of reality

THE unknown pervades the universe. That which people can see, with the aid of various sorts of telescope, accounts for just 4% of the total mass. The rest, however, must exist. Without it, galaxies would not survive and the universe would not be gently expanding, as witnessed by astronomers. What exactly constitutes this dark matter and dark energy remains mysterious, but physicists have recently uncovered some more clues, about the former, at least.

One possible explanation for dark matter is a group of subatomic particles called neutrinos. These objects are so difficult to catch that a screen made of lead a light-year thick would stop only half the neutrinos beamed at it from getting through. Yet neutrinos are thought to be the most abundant particles in the universe. Some ten thousand trillion trillion—most of them produced by nuclear reactions in the sun—reach Earth every second. All but a handful pass straight through the planet as if it wasn't there.

According to the Standard Model, the most successful description of particle physics to date, neutrinos come in three varieties, called “flavours”. These are known as electron neutrinos, tau neutrinos and muon neutrinos. Again, according to the Standard Model, they are point-like, electrically neutral and massless. But in recent years, this view has been challenged, as physicists realised that neutrinos might have mass.

The first strong evidence came in 1998, when researchers at an experiment called SuperKamiokande, based at Kamioka, in Japan, showed that muon neutrinos produced by cosmic rays hitting the upper atmosphere had gone missing by the time they should have reached an underground detector. SuperKamiokande's operators suspect that the missing muon neutrinos had changed flavour, becoming electron neutrinos or—more likely—tau neutrinos. Theory suggests that this process, called oscillation, can happen only if neutrinos have mass.

Since then, there have been other reports of oscillation. Results from the Sudbury Neutrino Observatory in Canada suggest that electron neutrinos produced by nuclear reactions in the sun change into either muon or tau neutrinos on their journey to Earth. Two other Japanese experiments, one conducted at Kamioka and one involving the KEK particle-accelerator laboratory in Tsukuba, near Tokyo, also hint at oscillation.

Last week, researchers working on the MINOS experiment at Fermilab, near Chicago, confirmed these results. Over the coming months and years, they hope to produce the most accurate measurements yet. The researchers created a beam of muon neutrinos by firing an intense stream of protons into a block of carbon. On the other side of the target sat a particle detector that monitored the number of muon neutrinos leaving the Fermilab site. The neutrinos then travelled 750km (450 miles) through the Earth to a detector in a former iron mine in Soudan, Minnesota.

By comparing how many muon neutrinos arrived there with the number generated, Fermilab's researchers were able to confirm that a significant number of muon neutrinos had disappeared—that is, they had changed flavour. Thus the neutrino does, indeed, have mass and a more accurate number can be put on it.

That number is tiny—0.00001% of the mass of an electron. But it is significant because neutrinos are so plentiful. While their mass is so small that neutrinos cannot be the sole constituent of dark matter, they have an advantage in that they are at least known to exist.

Darkness and light
The same cannot be said for sure of another possible form of dark matter being studied by a group of physicists in Italy. In a recent issue of Physical Review Letters, Emilio Zavattini and his colleagues at the National Institute of Nuclear Physics in Legnaro report an unusual signal in an experiment that goes by the unwieldy name of PVLAS. Like the good, sceptical scientists they are, the team has spent the past two years trying to explain the signal away—for example, as an artefact produced by the instruments. So far, however, they have failed. If the result continues to withstand scrutiny, it would appear to be evidence for an exotic new sort of fundamental particle, known as an axion, that could also be a type of dark matter.

The experiment itself is simple. The team sends a laser beam through a vacuum that sits in the centre of a powerful magnet. The laser light is polarised, meaning that it vibrates more in one direction than the other (for instance, from side-to-side rather than up-and-down). When the light emerges from the other side of the magnet, the team measures its polarisation to see what has happened.

According to the Standard Model, the answer should be very little, for the light has simply passed through empty space. Instead, Dr Zavattini and his colleagues found that the direction in which the emerging light vibrates is rotated ever so slightly from its original alignment. The effect is so small—and the measurement so precise—that a similar rotation in the minute hand of a clock would represent a billionth of a second.

Small though it is, this signal may be evidence for a brand new type of particle. Light itself is made up of particles called photons. The magnetic field in the experiment is composed of photons too, though unlike those of light, the photons of a magnetic field are continually flickering into and out of existence. If the signal Dr Zavattini has found is not an artefact, then its most likely explanation is that photons from the laser are interacting with the photons of the magnetic field in a way that produces axions.

Life is never quite so simple, though. A particle with the properties that the PVLAS experiment may have observed contradicts several astrophysical experiments. Since axions can be produced from light, the sun and other stars should generate them copiously. Unfortunately, nobody has seen such particles directly. And several other experiments looking for dark-matter axions have failed to observe them.

To help resolve the issue, Raul Rabadan of the Institute for Advanced Study in Princeton and his colleagues propose, in the same issue of Physical Review Letters, an independent test that could begin as soon as the end of this year. They suggest shining a bright beam of X-rays through a magnet, into a thick wall of material that is opaque to X-rays, and then through another magnet. Since the wall is opaque, it should block the x-rays completely.

However, x-rays are high-energy photons, so if PVLAS is producing axions, some of these photons should also turn into axions along the way. Unlike photons, axions would pass directly through the wall to the other side. Once there, they could change back into detectable x-ray photons by the reverse of the process that generated them in the first place (hence the need for the second magnet). And, although such an experiment would not be cheap, it would not require a machine of Fermilab proportions to carry it out.
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby mends » 20 Apr 2006, 11:29

FÍSICA

Medição inédita deixa mais próxima a construção de computadores quânticos
Se um dia for possível ter um palmtop com a capacidade de um supercomputador, um passo nessa direção foi dado agora por uma equipe de físicos brasileiros e alemães. Eles conseguiram pela primeira vez fazer medições diretas do "emaranhamento", uma propriedade das partículas elementares que ajudará na construção dos futuros computadores quânticos.
O "emaranhamento" é uma propriedade sutil das partículas quânticas, dizem os autores do estudo, realizado por três pesquisadores do Instituto de Física da UFRJ (Universidade Federal do Rio de Janeiro) e dois do Instituto Max-Planck em Dresden, na Alemanha.
"As partículas físicas se emaranham porque interagem em dados momentos", diz Luiz Davidovich, da UFRJ, especialista no estudo de partículas do mundo quântico como meio de codificação e transporte de informação e co-autor do estudo.
A experiência mediu o emaranhamento de pares de fótons -partículas da luz-, gerados através da iluminação de um cristal com um feixe de laser.
No mundo clássico, quando duas partículas interagem e depois se afastam, suas propriedades (como posição e velocidade) sempre se mantêm definidas. Já nas partículas quanticamente emaranhadas só é possível definir propriedades conjuntas.
O experimento utilizou dois pares de fótons e checou duas medidas independentes: a polarização (direção do campo elétrico) e o momento (associado ao recuo sofrido por um átomo quando emite um fóton).
Os cientistas conseguiram que tanto as polarizações como os momentos dos dois fótons do par ficassem emaranhados, com a configuração dos momentos igual à das polarizações. "Assim, as duas cópias foram construídas sobre o mesmo par de fótons, e uma única medida, realizada sobre um dos fótons do par, foi suficiente para determinar o emaranhamento", dizem.
O emaranhamento é encarado como um recurso valioso no processamento e transmissão de informação; átomos e fótons emaranhados poderiam transmitir informação de forma mais rápida e eficiente do que chips eletrônicos. (RICARDO BONALUME NETO, DA REPORTAGEM LOCAL)
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby junior » 20 Apr 2006, 11:44

Bom, isso é completamente fora da minha área, de modo que não posso opinar muito, mas o que sei é que o Davidovich é "fodão" :lol: . Se não me engano. é o físico brasileiro mais citado atualmente [obs: Citação é uma de n maneiras de se medir o impacto de sua pesquisa: é o número de vezes que seu trabalho é citado por outros trabalhos em journals considerados importantes. Obviamente, há n drawbacks, como se pode imaginar, mas é um parâmetro, de qualquer forma]! Lembro que vi uma vez um seminário dele em SP, e gostei bastante.

Essa coisa de emaranhamento, etc, é o futuro, possivelmente o que vai possibilitar à humanidade passar batido pelos limites físicos (=de tamanho) impostos pela <a href='http://en.wikipedia.org/wiki/Moore's_law' target='_blank'>*lei de Moore*</a>.
"Cosmologists are often in error, but never in doubt." - Lev Landau
User avatar
junior
Grão-Mestre Saidero
Grão-Mestre Saidero
 
Posts: 887
Joined: 13 Feb 2004, 11:55
Location: Sei lá... Em algum lugar com conexão a internet! :-)

Postby mends » 20 Apr 2006, 14:54

Cosmology and particle physics

What can the matter B?

Apr 20th 2006
From The Economist print edition


A new result bearing on the question of why the universe is made of matter

THAT people exist is more than a marvel explained by evolution. The presence of stars and planets vital to life—the very being of matter itself—is a wonder. For, at the moment at which the universe was created, matter and antimatter, being equal and opposite, should have been produced in equal and opposite amounts. Since, as every schoolboy knows, when matter and antimatter meet, they annihilate each other in a burst of energy, the equal amounts of matter and antimatter should have annihilated each other long ago and the universe should now be filled with energy and little else, which is evidently not the case. So what happened?

The key is that matter and antimatter are not, in fact, perfectly equal and opposite. In other words, they are not symmetrical—and that asymmetry favours matter. A few sources of asymmetry have already been found, but not enough to account for all the matter around. So physicists are eagerly seeking more, and two groups working at Fermilab, a particle-physics laboratory near Chicago, think they have found a candidate.

Their experiments involve a group of particles called B-mesons. Quantum mechanics allows B-mesons to turn into their antimatter counterparts and back again, a process known as mixing. This mixing is described by some deft but complicated mathematics, and is crucial to the question of asymmetry. The frequency at which it happens is related to a small but significant difference between the mass of the particle and its antiparticle.

The two experiments at Fermilab, each of which employed around 700 scientists from all over the world, have quantified the mixing process for a type of B-meson called Bs. The difference in mass between this particle and its antiparticle is greater than for other B-mesons studied to date, and so the frequency with which it oscillates is higher. The experiments found that Bs-mesons switch between being matter and antimatter some three trillion times a second.

Zippy though this undoubtedly is, it is slower than some predicted, ruling out some of the more exotic theories of particle physics. But the measurement does confirm there is more asymmetry around than had previously been detected. So, while it cannot fully explain the imbalance between matter and antimatter, it is a step in the right direction.
"I used to be on an endless run.
Believe in miracles 'cause I'm one.
I have been blessed with the power to survive.
After all these years I'm still alive."

Joey Ramone, em uma das minhas músicas favoritas ("I Believe in Miracles")
User avatar
mends
Saidero MegaGoldMember
Saidero	MegaGoldMember
 
Posts: 5183
Joined: 15 Sep 2003, 18:45
Location: por aí

Postby junior » 20 Apr 2006, 15:19

Baryogenesis... Esse é um dos grandes problemas cosmológicos em aberto, mais por falta de maneiras de fazer "provas" que por falta de modelos. :lol:

A idéia é que no universo primordial tinhamos toda a matéria em equilíbrio termodinâmico (químico, térmico, etc), de modo que era de se esperar que, grosseiramente falando, existisse o mesmo número de partículas (prótons, elétrons, etc) e anti-partículas (anti-prótons, pósitrons-como é chamado o "anti-elétron", etc).

O ponto é que matéria e anti-matéria se aniquilam gerando principalmente photons, o que resultaria num universo essencialmente feito de ondas em, mas não restaria matéria (e nem anti), pois essa teria se aniquilado. Sabemos que para que o universo seja como é hoje, foi necessário que existisse cerca de 1 bilhão e 1 partículas de matéria para cada 1 bilhão de anti, de modo que quando cada 1 bilhão de matéria com o 1 bilhão de anti se aniquilassem, sobrasse 1 partícula de matéria...

O problema é que gerar esse "pouquinho" mais é um pouco complicado usando as partículas que conhecemos hoje, pois existem umas condições mínimas para gerar assimetria matéria/anti-matéria, e uma delas é que as partículas violem uma coisa que chama "número quântico CP". O que é isso é detalhe, mas o ponto é que não conhecemos partículas que violam isso em número suficiente.

Esse processo de gerar mais matéria que anti é chamado de "baryogenesis" (partículas como o próton são para os físicos "bárions", que vem do grego "pesado", enquanto partículas como o elétron são "léptons", do grego "leve": lembre-se que um próton pesa cerca de 1840 vezes mais que um elétron).

Desde a década de 50 existe um sistema de partículas conhecido como K_0 - anti-K_0 (um "méson", ou seja, nem tão pesado nem tão leve...), que viola, mas numa quantidade pequena demais para explicar a assimetria do universo. Desde faz tempo se imaginava que o sistema B_0 - anti-B_0 também violaria, mas até um par de anos não se havia comprovado. Ainda assim, a quantidade de violação continua sendo pequena, e não existe nada de muito novo no sistema, ao contrário do que o PR do laboratório quis fazer parecer :lol: ...

Mas existem n outros modelos de baryogenesis, mas até onde eu sei pouca coisa pode ser de fato verificado experimentalmente atualmente, de modo que continuam surgindo n outros modelos :whip:
"Cosmologists are often in error, but never in doubt." - Lev Landau
User avatar
junior
Grão-Mestre Saidero
Grão-Mestre Saidero
 
Posts: 887
Joined: 13 Feb 2004, 11:55
Location: Sei lá... Em algum lugar com conexão a internet! :-)

Postby junior » 25 Apr 2006, 10:19

Saiu no Jornal da Ciência, uma publicação da SBPC.
Agora... Carreira política ?? :unsure: :unsure:

Bauru faz festa para Marcos Cesar Pontes

Recebido por cinco mil pessoas no aeroclube de sua cidade natal,
astronauta faz carreata e dá autógrafos.

O astronauta Marcos Pontes, 43, foi recebido como herói ontem em Bauru (343 km a noroeste de São Paulo), sua cidade natal.

Em clima de festa por conta do feriado de Tiradentes, cerca de 5.000 pessoas, segundo a PM, foram até o aeroclube para prestar uma homenagem a Pontes. Visivelmente cansado, mas sempre sorridente, o astronauta, durante todo o tempo, distribuiu autógrafos e tirou fotos com fãs. "É muito bom estar em casa. Ainda mais porque estive fora da Terra um tempo", brincou.

No aeroclube, Pontes recebeu homenagens da Esquadrilha da Fumaça, que grafou no céu "Obrigado Pontes" e "Brasil", além de desenhar um coração.
O público agitou bandeiras brasileiras e alguns ensaiaram gritos de "lindo" e "nosso herói". "Ele é uma pessoa muito simpática, teve uma vida dedicada a isso e agora projeta a nossa cidade", afirmou o gerente comercial José Eduardo Tonelli, 46, que levou a mulher, os dois filhos e a cadela de estimação para assistir às comemorações.
O assédio dos espectadores era tão grande que, logo que Pontes subiu ao palco, a multidão que o acompanhou provocou um estalo na estrutura do palanque.
Mesmo com a ameaça de queda, os fãs não atenderam aos pedidos da PM e só desceram após Pontes ir ao microfone e pedir, em nome da segurança. Só os familiares permaneceram.

Uma banda marcial e um coral se apresentaram na cerimônia. Durante a execução do Hino Nacional, Pontes conseguiu realizar seu maior desejo desde que chegou da missão espacial: abraçar o pai, Virgílio de Pontes, 88.
Além da família que mora em Bauru, estavam presentes um sobrinho-neto do aviador Santos-Dumont e o filho de Pontes, Fábio, 19, que saiu de Houston para acompanhar o pai.
Pontes partiu em carreata, às 10h50. Moradores e motoristas já aguardavam a passagem do astronauta pelas ruas, sobre um carro do Corpo de Bombeiros.
Durante uma hora, vestindo o macacão da missão Centenário e sob uma temperatura de quase 30C, Pontes não deixou nem sequer um minuto de acenar aos moradores de Bauru.

Na entrevista coletiva, no Teatro Municipal, Pontes se mostrou incomodado com o rótulo de herói. "Eu não sei de tudo. Eu não sou perfeito. Tenho muitos defeitos, como todo mundo", afirmou.
Pontes disse ainda achar "deselegantes" as críticas aos experimentos realizados no espaço. "São cientistas que fizeram, profissionais de alto gabarito." Mas, logo depois, relativizou. "O resultado [do experimento com feijão] era óbvio. Eu sabia o que ia acontecer". E justificou: "Quando se falava das sementinhas, eu ficava imaginando as crianças fazendo aqui no Brasil." Ele voltou a defender o gasto de US$ 10 milhões com a viagem. "Confio muito no governo brasileiro."
À tarde, Pontes foi descansar na casa da irmã, mas a agenda do dia só teria fim às 23h20, após um jantar comemorativo.


Cosmonauta não rejeita seguir carreira política

O astronauta Marcos Pontes se transformou em celebridade. Na sexta-feira, ao chegar a Bauru, o antes desconhecido filho da cidade não conseguia se locomover no meio da multidão, mesmo com a escolta constante de cerca de 20 policiais militares. Houve tumulto em quase todo o trajeto. Pessoas se empurravam e lutavam para ter um autógrafo do conterrâneo famoso.
Um dia antes, em Brasília, pela manhã, apesar de acenar para os irmãos, presentes ao evento, só conseguiu abraçá-los à noite, já no fim dos compromissos.
"Quando eu fui escolhido, o chefe da seleção veio e disse: "Sua vida vai mudar um pouco. E já vai começar agora, com uma coletiva de imprensa". Deu um frio na barriga. Até então nunca tinha imaginado isso", disse.
A irmã, Rosa, que ajudou a criar Pontes, resumiu: "Ele não é mais só meu. Agora, é de todo o Brasil". Durante todo o dia, a palavra "herói" marcou os pronunciamentos de autoridades, amigos e convidados da festa. Pontes renegou a glória. "Quando comecei esse trabalho, não pensei em virar herói."
Mas, questionado sobre o peso do fardo, se disse tranqüilo. "Isso não me assusta. Toda vez que eu sento numa reunião com a mesa internacional e tem uma bandeira brasileira na frente, ah, isso imprime uma responsabilidade muito grande", afirmou.


Sem comparações

O astronauta brasileiro também pediu para que não o comparem com outras personalidades que marcaram a história.
"Não quero ser comparado a Santos-Dumont ou a Yuri Gagarin. Quero ser comparado a mim mesmo. Peço para que me reconheçam pelo meu trabalho."
Sobre o futuro, deu palpites e não descartou usar a fama para concorrer a algum cargo político.
"Eu tenho uma bagagem técnica e de relações internacionais muito boa e vou ter de achar uma posição para isso. Mas, para a política, eu teria de me preparar antes. Se eu achar que isso é a melhor maneira de servir o Brasil, eu posso fazer isso."

(Folha de SP, 22/4)
"Cosmologists are often in error, but never in doubt." - Lev Landau
User avatar
junior
Grão-Mestre Saidero
Grão-Mestre Saidero
 
Posts: 887
Joined: 13 Feb 2004, 11:55
Location: Sei lá... Em algum lugar com conexão a internet! :-)

PreviousNext

Return to Papo Sério

cron